El modelo de Melitz (2003) Firmas y Comercio Internacional

José Pulido

Universidad del Rosario

2020-1

Melitz (2003)

- Melitz (2003) develops a model that can successfully explain many of the firm-level features seen in the previous slides
- Main features:
 - Firms are heterogeneous in productivity
 - Fixed costs of exporting
- Main implications:
 - Only the most productive firms export
 - Trade liberalization reallocates market shares towards most productive firms
 - ► This reallocation works like an increase in industry's productivity

José Pulido (UR) Modelo de Melitz FCI – 2020-1 2/29

Demand

Representative consumer has CES preferences

$$U = \left[\int_{\omega \in \Omega} q(\omega)^{\frac{\sigma - 1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma - 1}}$$

where Ω is the set of available varieties

Consumers maximize U subject to

$$\int_{\omega} p(\omega) q(\omega) d\omega = R$$

• This yields demand for individual variety ω :

$$q(\omega) = \left[\frac{p(\omega)}{P}\right]^{-\sigma} \frac{R}{P}$$

where P is the CES price index

$$P = \left[\int_{\omega} p(\omega)^{1-\sigma} d\omega \right]^{\frac{1}{1-\sigma}}$$

- ullet There is a continuum of firms each producing a different variety ω
- One factor of production, labor, inelastically supplied at its aggregate level L
- There are increasing returns to scale in production:

$$I = f + \frac{q}{\varphi}$$

All firms share the same fixed cost of production f but have different productivity levels indexed by $\varphi > 0$

• Each firm's constant marginal cost is given by

$$MC(\varphi) = \frac{w}{\varphi}$$

where w is the wage from now normalized to one

José Pulido (UR) Modelo de Melitz FCI – 2020-1 4/29

- ullet All firms face a residual demand curve with elasticity σ
- All firms set the same markup over marginal cost

$$p(\varphi) = \frac{\sigma}{\sigma - 1} \frac{1}{\varphi}$$

ullet Firm revenue and profit are determined by arphi and aggregate variables:

$$r(\varphi) = R \left(P \frac{\sigma - 1}{\sigma} \varphi \right)^{\sigma - 1}$$
$$\pi(\varphi) = \frac{1}{\sigma} r(\varphi) - f$$

 Note that more productive firms have higher output and higher revenues

$$\frac{q(\varphi_1)}{q(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma} \text{ and } \frac{r(\varphi_1)}{r(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma-1}$$

- Variable profits (gross of fixed costs) are proportional to revenues for all firms (hence also increase in φ)
- ullet Higher arphi implies higher revenue productivity, which is typically the measured firm-level productivity

$$\frac{r(\varphi)}{l(\varphi)} = \frac{\sigma}{\sigma - 1} \left[1 - \frac{f}{l(\varphi)} \right]$$

- \blacktriangleright Crucial to take fixed costs into account revenue per variable input is independent of φ
- \bullet The model could be reinterpreted as φ representing differences in quality rather than in costs

Aggregation

- An equilibrium will be characterized by:
 - ► Mass M of firms
 - Distribution $\mu(\varphi)$ of productivity levels
- Since all firms with productivity φ charge the same price $p(\varphi)$ the price index can be written as

$$P = \left[\int_0^\infty p(\varphi)^{1-\sigma} M\mu(\varphi) d\varphi \right]^{\frac{1}{1-\sigma}}$$

• Given $\mu(\varphi)$ define a weighted average of φ as

$$\widetilde{\varphi} \equiv \left(E \left[\varphi^{\sigma - 1} \right] \right)^{\frac{1}{\sigma - 1}} = \left[\int_{0}^{\infty} \varphi^{\sigma - 1} \mu \left(\varphi \right) d\varphi \right]^{\frac{1}{\sigma - 1}}$$

Aggregation

• $\widetilde{\varphi}$ summarizes all the information in $\mu\left(\varphi\right)$ relevant for aggregate variables:

$$P = M^{1/(1-\sigma)} p(\widetilde{\varphi}) \qquad R = PQ = Mr(\widetilde{\varphi})$$

$$Q = M^{\sigma/(\sigma-1)} q(\widetilde{\varphi}) \qquad \Pi = M\pi(\widetilde{\varphi})$$

ullet \widetilde{arphi} represents aggregate productivity

Entry and Exit

Assumptions

- Firms are identical prior to entry and must pay a fixed investment cost f_e to enter
- Upon entry firms draw a productivity level φ from a common distribution $g(\varphi)$
- After observing their productivity firms decide whether to exit or to remain active
- \bullet Firms remaining active face a constant probability δ of a bad shock that would force them to exit

Entry and Exit

Implications

- In a stationary equilibrium, a firm either exits immediately or produces and earns the same profit $\pi\left(\varphi\right)$ each period
- Given a realization of φ , expected value of a firm (no time discounting) is

$$v\left(arphi
ight) = \max\left\{0, \sum_{t=0}^{\infty} (1-\delta)^t \, \pi\left(arphi
ight)
ight\} = \max\left\{0, \frac{\pi\left(arphi
ight)}{\delta}
ight\}$$

• There exists a unique productivity cutoff φ^* such that firms with $\varphi \geq \varphi^*$ produce and firms with $\varphi < \varphi^*$ exit

$$\pi\left(\varphi^{*}\right)=0$$

Entry and Exit

• Distribution of active firms $\mu(\varphi)$ will be given by the conditional of $g(\varphi)$ on $[\varphi^*, \infty)$

$$\mu\left(\varphi\right) = \begin{cases} \frac{g(\varphi)}{1 - G(\varphi^*)} & \text{if } \varphi \ge \varphi^* \\ 0 & \text{otherwise} \end{cases}$$

• This defines the aggregate productivity $\widetilde{\varphi}$ as a function of the cutoff φ^* :

$$\widetilde{arphi}\left(arphi^{st}
ight)=\left[rac{1}{1-\mathit{G}\left(arphi^{st}
ight)}\int_{arphi^{st}}^{\infty}arphi^{\sigma-1}\!\mathsf{g}\left(arphi
ight)\mathsf{d}arphi
ight]^{rac{1}{\sigma-1}}$$

Free Entry Condition

- Let $\overline{\pi} = \Pi/M$ denote the average profits per period across all active firms
- Free entry requires that the expected profits are equal to the fixed cost of entry:

$$0 imes G\left(arphi^{st}
ight)+rac{\overline{\pi}}{\delta} imes\left[1-G\left(arphi^{st}
ight)
ight]=f_{\mathsf{e}}$$

Free Entry condition (FE):

$$\overline{\pi} = rac{\delta f_e}{1 - G\left(arphi^*
ight)}$$

• If firms are less likely to survive (higher φ^*), they need to be compensated with higher average profits (higher $\overline{\pi}$)

José Pulido (UR) Modelo de Melitz FCI – 2020-1 12 / 29

Zero Cutoff Profit Condition

• Definition of φ^* can be manipulated to yield another relationship between φ^* and $\overline{\pi}$

$$\pi(\varphi^*) = 0 \Leftrightarrow r(\varphi^*) = \sigma f$$

$$\Leftrightarrow \overline{r} = r(\widetilde{\varphi}) = \left(\frac{\widetilde{\varphi}}{\varphi^*}\right)^{\sigma - 1} r(\varphi^*) = \left(\frac{\widetilde{\varphi}}{\varphi^*}\right)^{\sigma - 1} \sigma f$$

$$\overline{\pi} = \pi(\widetilde{\varphi}) = \frac{r(\widetilde{\varphi})}{\sigma} - f = f \left[\left(\frac{\widetilde{\varphi}}{\varphi^*}\right)^{\sigma - 1} - 1\right]$$

The last expression is the Zero Cutoff Profit condition (ZCP):

$$\overline{\pi} = f \left[\left(\frac{\widetilde{\varphi} \left(\varphi^* \right)}{\varphi^*} \right)^{\sigma - 1} - 1 \right]$$

José Pulido (UR) Modelo de Melitz FCI – 2020-1 13 / 29

Zero Cutoff Profit Condition

- As $\varphi^* \uparrow$ two effects on average profits:
 - $\pi \uparrow$ because there are more productive firms on average in the market and they have higher profits
 - $ightharpoonup \overline{\pi} \downarrow$ because other firms are more productive, there is more competition (lower price index)
- Whether ZCP is upward or downward sloping depends on the distribution of firms:
 - If right tail is thick enough (lots of very productive firms) then downward sloping
 - * True for commonly used distributions
 - ▶ For a special case of Pareto distribution the ZCP is flat because $\tilde{\varphi}/\varphi^*$ is constant

Autarky Equilibrium

Autarky Equilibrium

- ullet FE and ZCP conditions uniquely determine $\overline{\pi}$ and $arphi^*$
- ullet Last endogenous variable to be determined is the measure of firms M
 - ▶ L = total expenditure = total revenues = R
 - $ightharpoonup R = M\overline{r}$

 - $M = \frac{L}{\sigma(\overline{\pi}+f)}$

Trade

- Without trade costs all active firms export and industry productivity is not affected by trade ($\tilde{\varphi}$ fixed)
- With only variable trade costs would still get counterfactual prediction that all firms exports
- To achieve self-selection into exporting the model needs fixed costs of exporting
 - In order to export firm needs to pay an additional fixed cost f_x after learning its productivity φ
- Include standard iceberg costs:
 - ightharpoonup Need to send au units for one unit to arrive
- Consider a world with n + 1 symmetric countries (n is # countries different to home)
 - Asymmetric case difficult to handle analytically in the full generality of the model

 José Pulido (UR)
 Modelo de Melitz
 FCI – 2020-1
 17 / 29

- Firm with productivity φ
 - ► Sets price $p = \frac{\sigma}{\sigma 1} \frac{1}{\omega}$ on domestic market
 - ▶ Earn revenues $r_d(\varphi) = R(P\varphi^{\sigma-1})^{\sigma-1}$ from domestic sales
- If the firm chooses to export to a particular market
 - Sets export price $p_x = \tau \frac{\sigma}{\sigma 1} \frac{1}{\omega}$
 - ► Earn export revenues $r_x(\varphi) = \tau^{1-\sigma} R_x \left(P_x \varphi \frac{\sigma-1}{\sigma} \right)^{\sigma-1}$
- Given symmetry $P = P_x$, $R = R_x$
 - If a firm exports, it exports to all countries
- Then:

$$\pi_d(\varphi) = \frac{r_d(\varphi)}{\sigma} - f, \quad \pi_{\mathsf{x}}(\varphi) = \frac{r_{\mathsf{x}}(\varphi)}{\sigma} - f_{\mathsf{x}}$$

Cutoffs

- Now we need to find:
 - ▶ Domestic cutoff φ^*
 - Exporting cutoff φ*,
- Exporting cutoff φ_{\star}^* is such that $\pi_{\star}(\varphi_{\star}^*)=0$

$$\frac{\tau^{1-\sigma} r_d \left(\varphi_x^*\right)}{\sigma} - f_x = 0$$

$$\frac{\tau^{1-\sigma} r_d \left(\varphi^*\right)}{\sigma} \left(\frac{\varphi_x^*}{\varphi^*}\right)^{\sigma-1} - f_x = 0$$

$$\tau^{1-\sigma} f \left(\frac{\varphi_x^*}{\varphi^*}\right)^{\sigma-1} - f_x = 0$$

$$\varphi_x^* = \varphi^* \tau \left(\frac{f_x}{f}\right)^{\frac{1}{\sigma-1}}$$

so we just need to find φ^*

• Assume that $\tau^{\sigma-1}f_x > f$ so that $\varphi_x^* > \varphi^*$

Selection into Exports

Cutoffs

- We need to find (ZCP)^T and FE under trade
- Define:
 - ightharpoons $\widetilde{arphi}\left(arphi^{*}
 ight)$ average productivity of producing firms
 - $ightharpoonup \widetilde{\varphi}_{x}\left(\varphi_{x}^{st}
 ight)$ average productivity of exporting firms
- Average profits now depend on domestic and export profits:

$$\overline{\pi} = \pi_d\left(\widetilde{\varphi}\right) + p_{\mathsf{X}} n \pi_{\mathsf{X}}\left(\widetilde{\varphi}_{\mathsf{X}}\right)$$

where p_x is the probability of exporting $=\frac{1-G(\varphi_x^*)}{1-G(\varphi^*)}$

Equilibrium Conditions

ullet Zero cutoff profit condition under trade (ZCP)^T is:

$$\overline{\pi} = f\left[\left(\frac{\widetilde{\varphi}\left(\varphi^{*}\right)}{\varphi^{*}}\right)^{\sigma-1} - 1\right] + p_{\mathsf{X}} n f_{\mathsf{X}} \left[\left(\frac{\widetilde{\varphi}_{\mathsf{X}}\left(\varphi^{*}\right)}{\varphi_{\mathsf{X}}^{*}\left(\varphi^{*}\right)}\right)^{\sigma-1} - 1\right]$$

Free-entry condition is the same:

$$\overline{\pi} = rac{\delta f_e}{1 - G\left(arphi^*
ight)}$$

José Pulido (UR) Modelo de Melitz FCI – 2020-1

- Trade causes some of the least productive firms to exit: $\varphi^* > \varphi_a^*$ (where φ_a^* is the production cutoff under autarky)
 - ▶ Demand faced by firms that can export ↑
 - ▶ Demand for labor by these firms ↑
 - ▶ Real wage ↑
 - Less productive firms cannot afford to pay wage and exit
- In domestic market every firm's profits ↓ because of entry of productive exporters from abroad
- Exporters: only most productive gain overall
 - gain in export market
 - lose in domestic market

Impact of Trade (I)

- Measure of domestic firms decreases but the overall product variety rises:
 - ▶ Number of domestic firms can be computed again as:

$$L = M\overline{r} \Rightarrow L = M(r_d(\widetilde{\varphi}) + p_x n r_x(\widetilde{\varphi}_x))$$

$$M = \frac{L}{\sigma(\pi_d(\widetilde{\varphi}) + f + p_x n \pi_x(\widetilde{\varphi}_x) + p_x n f_x)}$$

$$M = \frac{L}{\sigma(\overline{\pi} + f + p_x n f_x)}$$

Number of varieties available for consumers is simply: $M_t = M + M_x = M + p_x M = (1 + p_x) M$

Impact of Trade (II)

- Aggregate productivity increases
 - ▶ Total average productivity can be measured as:

$$\widetilde{\varphi}_{t} = \left[\frac{1}{M_{t}} \left(M \widetilde{\varphi}^{\sigma-1} + M_{X} \left(\frac{\widetilde{\varphi}_{X}}{\tau} \right)^{\sigma-1} \right) \right]^{\frac{1}{\sigma-1}}$$

▶ In terms of aggregation, $\widetilde{\varphi}_t$ satisfies the same properties of $\widetilde{\varphi}_a$ under autarky, so the price index can be rewritten as:

$$P = M_t^{1/(1-\sigma)} rac{\sigma}{\sigma-1} \left(rac{1}{\widetilde{arphi}_t}
ight)$$

Impact of Trade (III)

- Welfare (W) unambiguously rises
 - ▶ Measure of welfare is real wage: $W = 1/P = M_t^{1/(\sigma-1)} \frac{\sigma-1}{\sigma} \left(\widetilde{\varphi}_t\right)$
 - ▶ The gains from trade can be computed as: $\frac{W}{W_a} 1$ where:

$$\frac{W}{W_a} = \left(\frac{M_t}{M_a}\right)^{1/(\sigma-1)} \frac{(\widetilde{\varphi}_t)}{(\widetilde{\varphi}_a)}$$

► Gains from trade: Gains for increase in variety + gains for improved productivity (models with variable mark-ups can display pro-competitive effects).